RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2015

THIRD YEAR [BATCH 2013-16]

ECONOMICS [Hons]

Date : 14/12/2015 Time : 11 am – 3 pm

-Paper : V

Full Marks : 80

[Use a separate Answer Book for each Group]

Group - A

Answer any three questions

- 1. Consider the general linear model $Y = x\beta + \epsilon$. State the assumptions that are necessary to estimate β by applying OLS. Prove that OLS estimates of β are BLUE. [10]
- 2. The following fitted multiple regression equation is used to estimate the trade-off between time spent in sleeping and working (standard errors are in parenthesis), where <u>sleep</u> and <u>totwrk</u> (total work) are measured in minutes /week, and <u>educ</u> (education) and <u>age</u> are measured in years :

(5.88)

sleep = $3638 \cdot 25 - 0.148$ totwrk -11.13 educ +2.20 age

(112.28) (0.0167)

Number of observations = 44, $R^2 = 0.1134$

- a) How would you interpret the coefficient of <u>totwrk</u>?
- b) If someone works five more hours / week, by how many minutes is sleep predicted to fall?

(1.45)

- c) Are <u>educ</u> and <u>age</u> individually significant at 5% level against respective two sided alternatives? Show your work.
- d) Carry out the overall test of significance (i.e. H_0 : <u>All the slope coefficients are simultaneously</u> <u>equal to zero</u> ag. H_1 : <u>Not all slope coefficients are simultaneously zero</u>) for the fitted regression above.
- 3. Consider the consumption function : $C_t = \alpha + \beta Y_t + u_t$ where C_t is aggregate consumption expenditures in India and Y_t is disposable income, both in rupees. u_t is the random error ~ $N(0, \sigma^2)$. Suppose you have annual data from 1920 to 1997. Further suppose that you believe the postindependence (after 1947) consumption function is likely to be different from the pre-independence function.
 - a) Describe how you would specify a model that allows you to test whether the intercept alone is affected in the post-independence time period. What test statistic do you use to test this? Explain the test procedure.
 - b) How do you include dummy variables if you believe that both the intercept and the slope parameters are affected differently in the pre-vs post-independence period? What test statistic do you use to see if the slope is affected in the post-independence era?
- 4. a) Distinguish between slope dummy and intercept dummy. Describe both of these concepts using a suitable example.
 - b) Explain the problems associated with modelling dependent dummy variable using linear probability model. [5]
- a) Explain the concept of multicollinearity. What are the consequences of presence of multicollinearity in a simple linear regression model? How the concept of VIF can be used to detect the concept of multicollinearity? [2+1+2]
 - b) Explain why it is important to have (m 1) dummy variables in case a qualitative variable has m categories in the regression set up involving intercept. [5]

[3]

[5]

[5]

[5]

[1]

[2]

[4]

<u>Group – B</u>

W1	rite short notes on any two of the following :	(2×4)
a)	Policy of 'Controlled Expansion'.	
b)	Role of SEBI in Indian securities market.	
c)	Distinction between Gross NPA and net NPA.	
An	iswer any one question of the following :	(1 × 7)
a)	Discuss the major changes in the structure of direct taxes in India in the post-reform period.	
b)	State in brief the movements of factor services between nations as per the provisions of G.	ATS.
	Analyse their impact on India's service trade.	(3 + 4)
An	nswer any one question of the following :	(1 × 15)
a)	Discuss some of the major reforms undertaken in the Indian banking sector since introduction of economic reforms in the early 1990s. Mention the impact of all these reform	
	the performance of banking sector in the country.	(9 + 6)
b)	Explain the need for the FRBM Act in managing public expenditure and establishing discipline in India during post-reform period. Also indicate the impacts of global economic	
	since 2007 on this legal step taken by the Government of India.	(9 + 6)
An	nswer any two questions of the following :	(2×8)
a)	Discuss the major debates around the policy of 'Operation Barga' in West Bengal during 197	0s.
b)	Discuss the problems of industrialization in West Bengal.	
-)	Mantion the factors that evaluin the industrial ensuth in West Dansel often 1000s	

- c) Mention the factors that explain the industrial growth in West Bengal after 1990s.
- 10. Answer any one question of the following :

9.

- a) Discuss in brief the major structural breakthrough in the growth of NSDP of West Bengal in 1980s.
- b) How can the HDI, as estimated in the West Bengal Development Report (2004), be used to reflect attainments with regard to health and education in West Bengal?

	n a	0.0500	0-025	10-0	0-005	A.
7.8	or I opp	6.314	12:706	31-821	63-657	
	2	2-920	4.303	6-965	9-925	
111110	3	2-353 -	3.182	4.541	5-841	
	4	2.132	2:776	3.747	4.604	1111
	5	2.015	2:571	3.365	4-032	
C.64434	9	1-943	2-447	3-143	3.707	
	000007 20	1-895	2.365	2-998	3.499	Ser les
	8	1-860	2.306	2.896	3.355	- 12-
	600.000	0 1-833	2.262	2.821	3.250	10 Ton
COLOR L	• 10	1-812	2.228	2.764	3.169	
	Horses Horses	1-796	2.201	2.718	3.106	Harles .
	12	1-782	2.179	2.681	3-055	
	13	1.771	2.160	2.650	3-012	in the second
	14	1.761	2.145	2.624	2-977	
	15	1.753	2.131	2.602	2-947	The second
A State	16	1.746	2.120	2.583	2.921	1120
	11010	1.740	2.110	2.567	2.898	1. 1.02
	000 18 00	1.734	2.101	2.552	2.878	30
	rec 919 or	1.729	2.093	2.539	2.861	01 -
42.4	20	1.725	2.086	2.528	2.845	124
44-11	880-121 00	1.721	2.080	2.518	2.831	21
40.0	22	1-717	2.074	2.508	2.819	いたの
	23	1.714	2.069	2.500	2-807	
	24	8-141-7118-8	2.064	2.492	2:797 001 1	So a
40-01	25	1.708	2-060	2.485	2.787	21 1 1
E E	26	1.706	2.056	2.479	2:779	
0.62	228.027 00	6-9+1-703	2.052	2.473	2.771	
12.74	28	5.021·701	2.048	2.467	2:763	0.1.045
	29	1-699	2.045	2.462	2.756	3
	30	1-697	2.042	2.457	2:750	90- 1 J
	40	1-684	2.021	2.423	2:704	100
	60	1-671	2.000	2.390	2.660	00 00
ot dal.	120	1.658	1-980	2.358	2.617	90 90
	8	1-645	1-960	2.326	2.576	

6.

7.

8.

 (1×4)

10000	1111	r	2	4	2	4	L	×	6	10	12	15	20	24	30	40	60	120	8
		- No	0	t	100		- PP				APP 5	1000		The se	THE .	140.4 m	104	1201	00-1
	1 1.141	68 A	T.21C	9.74.6		0.726	8.920	0.	740.5	6.1	243.9 24	6.5	248.0	249-1	250-1	251-1	252.2	253.3 2	254.3
				V	10.20	2	10.25	72.0	10.38	07.0	10.41	9.43	19.45	45	19.46	-	9.48	19.49	19-50
	10.81	00.61	N			F0.8	8.80	28.5	18.8	8-79	8.74	8.70	8.66	8.64		8.59	8.57	8.55	8.53
	112.2	10.4				6.16	60.9	0.04	00.9	5.96	16.5	5.86		5.77		5.72	5.69	5.66	5-63
	11.1	5.70				4.95	4.88	68.1	4.77	4:74	4.68	4.62		4.53		4.46	4.43	4.40	4.36
	10.0	5.14	4.76	4.53	4.39	4.78	4.21	1.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
	5.50	4.74				3.87	3.79	8.73	3.68	3.64	3.57	3.51		3.41		3.34	3.30	3.27	3.23
	62.5	4.46				3.58	3.50	3.44	3.39	3.35	3.28	3.22		3.12		3.04	3.01	2.97	2.93
	5.15	4.26				3.37	3.29	3.23	3.18	3.14	3.07	3.01		2.90		2.83	2.79	2.75	2.71
	4.96	4.10				3.22	3.14	10.5	3.02	2.98	2.91	2.85		2.74		2.66	2.62	2.58	2.54
	4.84	3.98				3.09	3.01	2.95	2.90	2.85	2.79	2.72		2.61		2.53	2.49	2.45	2-40
	4.75	3.89				3.00	2.91	2.85	2.80					2.51		2.43	2.38	2.34	2-30
	4.67	3.81				2.92	2.83	2.77	2.71					2.42		2.34	2.30	2.25	1.1
	4.60	3.74				2.85	2.76	2.70	2.65					2:35		2.27	2.22	2	5
	4.54	3.68			2.90	2.79	2.71	2.64	2.59					2.29		2.20	01.2	2-11-2-	10.7
	4.49	3.63			2.85	2.74	2.66	2.59	2.54	2.49	2.42		2.28	2.24		5-12	2.11	90.7	10.7
	4.45	3.59				2.70	2.61	2.55	2.49					2.19		2.10	0.7	10.7	06.1
	4.41	3.55		2.93		2.66	2.58	2.51						51.2		2.00	7.07	16.1	76.1
	4.38	3.52				2.63	2.54	2.48								50.7	86.1	001	00.1
	4.35	3.49				2.6(2.51	2.45	2.39	2.35				2.08	2.04	66-1	C6.1	06.1	70L 1
	4.30	3.44				2.55	2.46	2.40						50.7		th. 1	60.1	+01	0/1
	4.26	3.40				2.51	2.42	2.36						96.1	+6.1	20.1	1.90	51.1	09.1
	4.23	3.37				2-47	2.39	2.32					NO.	C6-1	06.1	CO.1	D0 1		231
	4.20	3.34				2.45	2.36	2.29						16.1	10.1	10.1		11.1	
	4.17	3.32				2.4.	2.33	2.27					N. N.	1-89	1.84	61.1	1.14	80.1	70.1
	4.08	3.23	the second			2.3-	2.25	2.18		~1		1.92	1.84	62.1	1.74	69.1	1-04	8C-1	
	4.00	3.15				2.2	2.17	2.10		66-1	1.92	- All	1.75	1-70	1-65	1-59	1.53	1.47	1.39
	2.97	3.07				. I . C	2.09	2.02		144		1.75	1.66	1.61	1.55	1.50	1:43	1.35	1.25
-	2.9.4	3-00	A.		1	2.1(2.01	1.94	1.88	1.83		1.67	1.57	1-52	1.46	1-39	1.32	1.22	1-00

(3)

- × -